4.6 Article

A Redox-resistant Sirtuin-1 Mutant Protects against Hepatic Metabolic and Oxidant Stress

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 289, 期 11, 页码 7293-7306

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M113.520403

关键词

Glutathionylation; Metabolic Diseases; Oxidative Stress; Polyphenols; Resveratrol; Glutathiolation; High Fat High Sucrose Diet; Reactive Oxygen and Nitrogen Species

资金

  1. National Institutes of Health [PO1 HL 068758, R37 HL104017]
  2. NHLBI, National Institutes of Health, Department of Health and Human Services [HHSN268201000031C]
  3. National Institutes of Health Cardiovascular Post-doctoral Training Grant [HL007224]

向作者/读者索取更多资源

Background: Sirtuin-1 improves metabolic disease, but oxidants may inhibit it. Results: Metabolic stress increased glutathione adducts, inactivated endogenous Sirtuin-1, and promoted apoptosis. A novel Sirtuin-1 oxidation-insensitive mutant or glutaredoxin-1 prevented metabolic dysregulation and apoptosis. Conclusion: A novel Sirtuin-1 mutant circumvents oxidation and more effectively inhibits metabolic dysregulation and apoptosis. Significance: Oxidative inactivation of Sirtuin-1 contributes to metabolic disease. Sirtuin-1 (SirT1), a member of the NAD(+)-dependent class III histone deacetylase family, is inactivated in vitro by oxidation of critical cysteine thiols. In a model of metabolic syndrome, SirT1 activation attenuated apoptosis of hepatocytes and improved liver function including lipid metabolism. We show in SirT1-overexpressing HepG2 cells that oxidants (nitrosocysteine and hydrogen peroxide) or metabolic stress (high palmitate and high glucose) inactivated SirT1 by reversible oxidative post-translational modifications (OPTMs) on three cysteines. Mutating these oxidation-sensitive cysteines to serine preserved SirT1 activity and abolished reversible OPTMs. Overexpressed mutant SirT1 maintained deacetylase activity and attenuated proapoptotic signaling, whereas overexpressed wild type SirT1 was less protective in metabolically or oxidant-stressed cells. To prove that OPTMs of SirT1 are glutathione (GSH) adducts, glutaredoxin-1 was overexpressed to remove this modification. Glutaredoxin-1 overexpression maintained endogenous SirT1 activity and prevented proapoptotic signaling in metabolically stressed HepG2 cells. The in vivo significance of oxidative inactivation of SirT1 was investigated in livers of high fat diet-fed C57/B6J mice. SirT1 deacetylase activity was decreased in the absence of changes in SirT1 expression and associated with a marked increase in OPTMs. These results indicate that glutathione adducts on specific SirT1 thiols may be responsible for dysfunctional SirT1 associated with liver disease in metabolic syndrome.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据