4.6 Article

The Circulating Glycosaminoglycan Signature of Respiratory Failure in Critically Ill Adults

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 289, 期 12, 页码 8194-8202

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M113.539452

关键词

Chondroitin Sulfate; Glycobiology; Heparan Sulfate; Hyaluronate; Lung Injury; Sepsis; Endothelial Glycocalyx; Respiratory Failure

资金

  1. National Institutes of Health/NHLBI [K08 HL105538]
  2. Colorado Clinical and Translational Sciences Institute [UL1 RR025780, GM38060]

向作者/读者索取更多资源

Background: Endothelial glycocalyx degradation contributes to the pathogenesis of critical illness. Results: Mechanically ventilated subjects exhibited plasma glycocalyx breakdown signatures (glycosaminoglycan fragments) characteristic of direct versus indirect etiologies of respiratory failure. Conclusion: Circulating glycosaminoglycans provide insight into respiratory failure pathophysiology. Significance: This is the first study to characterize circulating glycosaminoglycans during critical illness, offering insight into the mechanisms underlying respiratory failure. Systemic inflammatory illnesses (such as sepsis) are marked by degradation of the endothelial glycocalyx, a layer of glycosaminoglycans (including heparan sulfate, chondroitin sulfate, and hyaluronic acid) lining the vascular lumen. We hypothesized that different pathophysiologic insults would produce characteristic patterns of released glycocalyx fragments. We collected plasma from healthy donors as well as from subjects with respiratory failure due to altered mental status (intoxication, ischemic brain injury), indirect lung injury (non-pulmonary sepsis, pancreatitis), or direct lung injury (aspiration, pneumonia). Mass spectrometry was employed to determine the quantity and sulfation patterns of circulating glycosaminoglycans. We found that circulating heparan sulfate fragments were significantly (23-fold) elevated in patients with indirect lung injury, while circulating hyaluronic acid concentrations were elevated (32-fold) in patients with direct lung injury. N-Sulfation and tri-sulfation of heparan disaccharides were significantly increased in patients with indirect lung injury. Chondroitin disaccharide sulfation was suppressed in all groups with respiratory failure. Plasma heparan sulfate concentrations directly correlated with intensive care unit length of stay. Serial plasma measurements performed in select patients revealed that circulating highly sulfated heparan fragments persisted for greater than 3 days after the onset of respiratory failure. Our findings demonstrate that circulating glycosaminoglycans are elevated in patterns characteristic of the etiology of respiratory failure and may serve as diagnostic and/or prognostic biomarkers of critical illness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据