4.6 Article

Molecular Characterization and Subcellular Localization of Arabidopsis Class VIII Myosin, ATM1

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 289, 期 18, 页码 12343-12355

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M113.521716

关键词

Actin; Arabidopsis; ATPases; Kinetics; Molecular Motors; Myosin

资金

  1. Japan Society for the Promotion of Science KAKENHI [21570159, 20001009, 23770060]
  2. Grants-in-Aid for Scientific Research [23770060, 21570159, 24658002] Funding Source: KAKEN

向作者/读者索取更多资源

Background: Molecular properties of class VIII myosin are not characterized. Results:Arabidopsis class VIII myosin, ATM1, has low enzymatic activity and high affinity for actin and is primarily localized at the cell cortex. Conclusion: Our data suggest that ATM1 functions as a tension sensor/generator. Significance: This is the first report of enzymatic and motile properties of class VIII myosin. Land plants possess myosin classes VIII and XI. Although some information is available on the molecular properties of class XI myosins, class VIII myosins are not characterized. Here, we report the first analysis of the enzymatic properties of class VIII myosin. The motor domain of Arabidopsis class VIII myosin, ATM1 (ATM1-MD), and the motor domain plus one IQ motif (ATM1-1IQ) were expressed in a baculovirus system and characterized. ATM1-MD and ATM1-1IQ had low actin-activated Mg2+-ATPase activity (V-max = 4 s(-1)), although their affinities for actin were high (K-actin = 4 m). The actin-sliding velocities of ATM1-MD and ATM1-1IQ were 0.02 and 0.089 m/s, respectively, from which the value for full-length ATM1 is calculated to be approximate to 0.2 m/s. The results of actin co-sedimentation assay showed that the duty ratio of ATM1 was approximate to 90%. ADP dissociation from the actinATM1 complex (acto-ATM1) was extremely slow, which accounts for the low actin-sliding velocity, low actin-activated ATPase activity, and high duty ratio. The rate of ADP dissociation from acto-ATM1 was markedly biphasic with fast and slow phase rates (5.1 and 0.41 s(-1), respectively). Physiological concentrations of free Mg2+ modulated actin-sliding velocity and actin-activated ATPase activity by changing the rate of ADP dissociation from acto-ATM1. GFP-fused full-length ATM1 expressed in Arabidopsis was localized to plasmodesmata, plastids, newly formed cell walls, and actin filaments at the cell cortex. Our results suggest that ATM1 functions as a tension sensor/generator at the cell cortex and other structures in Arabidopsis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据