4.6 Article

Mlh1-Mlh3, a Meiotic Crossover and DNA Mismatch Repair Factor, Is a Msh2-Msh3-stimulated Endonuclease

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 289, 期 9, 页码 5664-5673

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M113.534644

关键词

DNA Enzymes; DNA Mismatch Repair; DNA Recombination; DNA Repair; Meiosis; Mlh1-Mlh3; Crossing Over; Endonuclease

资金

  1. National Institutes of Health [GM53085, DG288295, GM087549]

向作者/读者索取更多资源

Background: Meiotic crossing over requires resolution of Holliday junctions through actions of the DNA mismatch repair factor Mlh1-Mlh3. Results: Mlh1-Mlh3 is a metal-dependent, Msh2-Msh3-stimulated endonuclease. Conclusion: Our observations support a direct role for Mlh1-Mlh3 endonuclease activity in recombination and repair. Significance: An enzymatic activity is identified for a key recombination and repair factor. Crossing over between homologous chromosomes is initiated in meiotic prophase in most sexually reproducing organisms by the appearance of programmed double strand breaks throughout the genome. In Saccharomyces cerevisiae the double-strand breaks are resected to form three prime single-strand tails that primarily invade complementary sequences in unbroken homologs. These invasion intermediates are converted into double Holliday junctions and then resolved into crossovers that facilitate homolog segregation during Meiosis I. Work in yeast suggests that Msh4-Msh5 stabilizes invasion intermediates and double Holliday junctions, which are resolved into crossovers in steps requiring Sgs1 helicase, Exo1, and a putative endonuclease activity encoded by the DNA mismatch repair factor Mlh1-Mlh3. We purified Mlh1-Mlh3 and showed that it is a metal-dependent and Msh2-Msh3-stimulated endonuclease that makes single-strand breaks in supercoiled DNA. These observations support a direct role for an Mlh1-Mlh3 endonuclease activity in resolving recombination intermediates and in DNA mismatch repair.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据