4.6 Article

Developmental Onset of Bilirubin-induced Neurotoxicity Involves Toll-like Receptor 2-dependent Signaling in Humanized UDP-glucuronosyltransferase1 Mice*

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 289, 期 8, 页码 4699-4709

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M113.518613

关键词

Brain; Glia; Neuroinflammation; Oxidative Stress; Toll-like Receptors (TLR); UDP-glucuronosyltransferase

资金

  1. National Institutes of Health from the United States Public Health Service [P42ES010337, GM100481, GM086713]

向作者/读者索取更多资源

Background: Neonatal jaundice with dangerously high levels of serum bilirubin leads to neurological toxicity. Results: Toll-like receptor 2 signaling is essential for regulation of glia activation, neuroinflammation, and oxidative stress when neonatal mice experience severe hyperbilirubinemia. Conclusion: Toll-like receptor 2 signaling is linked to a protection mode against serum bilirubin-induced brain toxicity. Significance: Understanding how signaling from innate immunity contributes to bilirubin-induced pathology. Biological and signaling events that connect developmentally induced hyperbilirubinemia to bilirubin-induced neurological dysfunction (BIND) and CNS toxicity in humans are poorly understood. In mammals, UDP-glucuronosyltransferase 1A1 (UGT1A1) is the sole enzyme responsible for bilirubin glucuronidation, a rate-limiting step necessary for bilirubin metabolism and clearance. Humanized mice that express the entire UGT1 locus (hUGT1) and the UGT1A1 gene, develop neonatal hyperbilirubinemia, with 8-10% of hUGT1 mice succumbing to CNS damage, a phenotype that is presented by uncontrollable seizures. We demonstrate that neuroinflammation and reactive gliosis are prominent features of bilirubin brain toxicity, and a disturbed redox status resulting from activation of NADPH oxidase is an important contributing mechanism found in BIND. Using knock-out mice and primary brain cells, we connect a key pattern recognition receptor, Toll-like receptor 2 (TLR2), to hyperbilirubinemia-induced signaling. We illustrate a requirement for TLR2 signaling in regulating gliosis, proinflammatory mediators, and oxidative stress when neonatal mice encounter severe hyperbilirubinemia. TLR2-mediated gliosis strongly correlates with pronounced neuroinflammation in the CNS with up-regulation of TNF, IL-1, and IL-6, creating a pro-inflammatory CNS environment. Gene expression and immunohistochemistry staining show that hUGT1/Tlr2(-/-) mice fail to activate glial cells, proinflammatory cytokines, and stress response genes. In addition, bilirubin-induced apoptosis was significantly enhanced by blocking TLR2 signaling indicating its anti-apoptotic property. Consequently, a higher neonatal death rate (57.1%) in hUGT1/Tlr2(-/-) mice was observed when compared with hUGT1 mice (8.7%). These results suggest that TLR2 signaling and microglia neuroinflammation are linked to a repair and/or protection mode against BIND.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据