4.6 Article

Comprehensive Analysis of MicroRNA (miRNA) Targets in Breast Cancer Cells

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 288, 期 38, 页码 27480-27493

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M113.491803

关键词

-

资金

  1. National Institutes of Health [CA140346, CA133322]

向作者/读者索取更多资源

MicroRNAs (miRNAs) regulate mRNA stability and translation through the action of the RNAi-induced silencing complex. In this study, we systematically identified endogenous miRNA target genes by using AGO2 immunoprecipitation (AGO2-IP) and microarray analyses in two breast cancer cell lines, MCF7 and MDA-MB-231, representing luminal and basal-like breast cancer, respectively. The expression levels of similar to 70% of the AGO2-IP mRNAs were increased by DROSHA or DICER1 knockdown. In addition, integrated analysis of miRNA expression profiles, mRNA-AGO2 interaction, and the 3 '-UTR of mRNAs revealed that >60% of the AGO2-IP mRNAs were putative targets of the 50 most abundantly expressed miRNAs. Together, these results suggested that the majority of the AGO2-associated mRNAs were bona fide miRNA targets. Functional enrichment analysis uncovered that the AGO2-IP mRNAs were involved in regulation of cell cycle, apoptosis, adhesion/migration/invasion, stress responses (e. g. DNA damage and endoplasmic reticulum stress and hypoxia), and cell-cell communication (e.g. Notch and Ephrin signaling pathways). A role of miRNAs in regulating cell migration/invasion and stress response was further defined by examining the impact of DROSHA knockdown on cell behaviors. We demonstrated that DROSHA knockdown enhanced cell migration and invasion, whereas it sensitized cells to cell death induced by suspension culture, glucose depletion, and unfolding protein stress. Data from an orthotopic xenograft model showed that DROSHA knockdown resulted in reduced growth of primary tumors but enhanced lung metastasis. Taken together, these results suggest that miRNAs collectively function to promote survival of tumor cells under stress but suppress cell migration/invasion in breast cancer cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据