4.6 Article

Epidermal Growth Factor Receptor (EGFR) Signaling Promotes Proliferation and Survival in Osteoprogenitors by Increasing Early Growth Response 2 (EGR2) Expression

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 288, 期 28, 页码 20488-20498

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M112.447250

关键词

-

资金

  1. National Institutes of Health [K01 DK071988]
  2. Penn Center for Musculoskeletal Disorders [P30AR050950]
  3. New Jersey Stem Cell Research Grant
  4. Penn Institute on Aging pilot grant
  5. [NCI R25 CA101871-07]

向作者/读者索取更多资源

Maintaining bone architecture requires continuous generation of osteoblasts from osteoprogenitor pools. Our previous study of mice with epidermal growth factor receptor (EGFR) specifically inactivated in osteoblast lineage cells revealed that EGFR stimulates bone formation by expanding the population of mesenchymal progenitors. EGFR ligands are potent regulators for the osteoprogenitor pool, but the underlying mechanisms are largely unknown. Here we demonstrate that activation of EGFR increases the number of osteoprogenitors by promoting cell proliferation and suppressing either serum depletion-induced or TNF alpha-induced apoptosis mainly through the MAPK/ERK pathway. Mouse calvarial organ culture revealed that EGF elevated the number of proliferative cells and decreased the number of apoptotic cells, which led to increased osteoblasts. Microarray analysis of MC3T3 cells, an osteoprogenitor cell line, revealed that EGFR signaling stimulates the expression of MCL1, an antiapoptotic protein, and a family of EGR transcription factors (EGR1, -2, and -3). The up-regulation of MCL1 and EGR2 by EGF was further confirmed in osteoprogenitors close to the calvarial bone surface. Overexpression of NAB2, a co-repressor for EGRs, attenuated the EGF-induced increase in osteoprogenitor number. Interestingly, knocking down the expression of EGR2, but not EGR1 or -3, resulted in a similar effect. Using inhibitor, adenovirus overexpression, and siRNA approaches, we demonstrate that EGFR signaling activates the MAPK/ERK pathway to stimulate the expression of EGR2, which in turn leads to cell growth and MCL1-mediated cell survival. Taken together, our data clearly demonstrate that EGFR-induced EGR2 expression is critical for osteoprogenitor maintenance and new bone formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据