4.6 Article

Steap4 Plays a Critical Role in Osteoclastogenesis in Vitro by Regulating Cellular Iron/Reactive Oxygen Species (ROS) Levels and cAMP Response Element-binding Protein (CREB) Activation

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 288, 期 42, 页码 30064-30074

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M113.478750

关键词

Bone; Iron Metabolism; Mitochondria; Osteoclast; Oxidative Stress

资金

  1. NIAMS
  2. NIA, National Institutes of Health [AR055694, AR062012, P01 AG13918]
  3. University of Arkansas for Medical Sciences Tobacco Settlement Funds by the Arkansas Biosciences Institute

向作者/读者索取更多资源

Background: Iron uptake through the transferrin-dependent pathway is essential for osteoclast differentiation. Results: Knocking down the expression of Steap4, an endosomal ferrireductase, inhibits osteoclast formation and decreases cellular iron and ROS production. Conclusion: Steap4 regulates cellular iron metabolism during osteoclast differentiation. Significance: This work provides new insights into the molecular mechanisms regulating cellular iron metabolism in osteoclast lineage cells. Iron is essential for osteoclast differentiation, and iron overload in a variety of hematologic diseases is associated with excessive bone resorption. Iron uptake by osteoclast precursors via the transferrin cycle increases mitochondrial biogenesis, reactive oxygen species production, and activation of cAMP response element-binding protein, a critical transcription factor downstream of receptor activator of NF-B-ligand-induced calcium signaling. These changes are required for the differentiation of osteoclast precursors to mature bone-resorbing osteoclasts. However, the molecular mechanisms regulating cellular iron metabolism in osteoclasts remain largely unknown. In this report, we provide evidence that Steap4, a member of the six-transmembrane epithelial antigen of prostate (Steap) family proteins, is an endosomal ferrireductase with a critical role in cellular iron utilization in osteoclasts. Specifically, we show that Steap4 is the only Steap family protein that is up-regulated during osteoclast differentiation. Knocking down Steap4 expression in vitro by lentivirus-mediated short hairpin RNAs inhibits osteoclast formation and decreases cellular ferrous iron, reactive oxygen species, and the activation of cAMP response element-binding protein. These results demonstrate that Steap4 is a critical enzyme for cellular iron uptake and utilization in osteoclasts and, thus, indispensable for osteoclast development and function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据