4.6 Article

Stac3 Is Required for Myotube Formation and Myogenic Differentiation in Vertebrate Skeletal Muscle

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 287, 期 52, 页码 43936-43949

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M112.361311

关键词

-

资金

  1. MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland)
  2. Scottish Funding Council [HR09011]
  3. European Community [222719-LIFECYCLE]

向作者/读者索取更多资源

Stac3 was identified as a nutritionally regulated gene from an Atlantic salmon subtractive hybridization library with highest expression in skeletal muscle. Salmon Stac3 mRNA was highly correlated with myogenin and myoD1a expression during differentiation of a salmon primary myogenic culture and was regulated by amino acid availability. In zebrafish embryos, stac3 was initially expressed in myotomal adaxial cells and in fast muscle fibers post-segmentation. Morpholino knockdown resulted in defects in myofibrillar protein assembly, particularly in slow muscle fibers, and decreased levels of the hedgehog receptor patched. The function of Stac3 was further characterized in vitro using the mammalian C2C12 myogenic cell line. Stac3 mRNA expression increased during the differentiation of the C2C12 myogenic cell line. Knock-down of Stac3 by RNAi inhibited myotube formation, and microarray analysis revealed that transcripts involved in cell cycle, focal adhesion, cytoskeleton, and the pro-myogenic factors Igfbp-5 and Igf2 were down-regulated. RNAi-treated cells had suppressed Akt signaling and exogenous insulin-like growth factor (Igf) 2 was unable to rescue the phenotype, however, Igf/Akt signaling was not blocked. Overexpression of Stac3, which results in increased levels of Igfbp-5 mRNA, did not lead to increased differentiation. In synchronized cells, Stac3 mRNA was most abundant during the G(1) phase of the cell cycle. RNAi-treated cells were smaller, had higher proliferation rates and a decreased proportion of cells in G(1) phase when compared with controls, suggesting a role in the G(1) phase checkpoint. These results identify Stac3 as a new gene required for myogenic differentiation and myofibrillar protein assembly in vertebrates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据