4.6 Article

Laminar Flow Activation of ERK5 Protein in Vascular Endothelium Leads to Atheroprotective Effect via NF-E2-related Factor 2 (Nrf2) Activation

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 287, 期 48, 页码 40722-40731

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M112.381509

关键词

-

资金

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF)
  2. Korea government [2011-0006184, 2011-0026075]
  3. Korea Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea [A111345]
  4. Korea Health Promotion Institute [A111345] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  5. National Research Foundation of Korea [2010-0007386] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Atherosclerosis is often observed in areas where disturbed flow is formed, whereas atheroprotective region is found in areas where steady laminar flow is developed. It has been reported that some genes activated by blood flow play important roles in vascular function and pathogenesis of atherosclerosis. Extracellular signal-regulated kinase 5 (ERK5) has been reported to regulate endothelial integrity and protect from vascular dysfunction and disease under laminar flow. Kruppel-like factor 2 (KLF2) and NF-E2-related factor 2 (Nrf2) are major transcriptional factors that contribute to anti-atherogenic responses under laminar flow. Implication of ERK5 in laminar flow-mediated regulation of KLF2-dependent gene has been established, whereas the role of ERK5 in laminar flow-mediated activation of Nrf2 pathway has not been addressed yet. In this study, we found that the blockage of ERK5 either by genetic depletion with siRNA or by biochemical inactivation with a specific chemical compound inhibited laminar flow-induced up-regulation of Nrf2-dependent gene expressions, whereas activation of ERK5 increased transcriptional activity and nuclear translocation of Nrf2, which suggests that ERK5 mediates laminar flow-induced up-regulation of Nrf2-dependent gene expression. Further functional studies showed that ERK5 provides protection against oxidative stress-induced cytotoxicity dependent on Nrf2. Molecular interaction between ERK5 and Nrf2 was further induced by laminar flow. Finally, flow-dependent nuclear localization of Nrf2 was inhibited by BIX02189, a specific inhibitor of MEK5, in aorta of mice in vivo. Collectively, these data demonstrate that laminar flow-induced activation of ERK5-Nrf2 signal pathway plays a critical role for anti-inflammatory and anti-apoptotic mechanism in endothelial cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据