4.6 Article

Frequent Incorporation of Ribonucleotides during HIV-1 Reverse Transcription and Their Attenuated Repair in Macrophages

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 287, 期 17, 页码 14280-14288

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M112.348482

关键词

-

资金

  1. National Institutes of Health [AI077401, AI049781, GM0495763]

向作者/读者索取更多资源

Macrophages are well known long-lived reservoirs of HIV-1. Unlike activated CD4(+) T cells, this nondividing HIV-1 target cell type contains a very low level of the deoxynucleoside triphosphates (dNTPs) required for proviral DNA synthesis whereas the ribonucleoside triphosphate (rNTP) levels remain in the millimolar range, resulting in an extremely low dNTP/rNTP ratio. Biochemical simulations demonstrate that HIV-1 reverse transcriptase (RT) efficiently incorporates ribonucleoside monophosphates (rNMPs) during DNA synthesis at this ratio, predicting frequent rNMP incorporation by the virus specifically in macrophages. Indeed, HIV-1 RT incorporates rNMPs at a remarkable rate of 1/146 nucleotides during macrophage infection. This greatly exceeds known rates for cellular replicative polymerases. In contrast, little or no rNMP incorporation is detected in CD4(+) T cells. Repair of these rNMP lesions is also substantially delayed in macrophages compared with CD4(+) T cells. Single rNMPs embedded in a DNA template are known to induce cellular DNA polymerase pausing, which mechanistically contributes to mutation synthesis. Indeed, we also observed that embedded rNMPs in a dsDNA template also induce HIV-1 RT DNA synthesis pausing. Moreover, unrepaired rNMPs incorporated into the provirus during HIV-1 reverse transcription would be generally mutagenic as was shown in Saccharomyces cerevisiae. Most importantly, the frequent incorporation of rNMPs makes them an ideal candidate for development of a new class of HIV RT inhibitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据