4.6 Article

The Viroporin Activity of the Minor Structural Proteins VP2 and VP3 Is Required for SV40 Propagation

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 288, 期 4, 页码 2510-2520

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M112.428425

关键词

-

资金

  1. United States Public Health Grant [AI078142]
  2. National Science Foundation, Integrative Graduate Education and Research Traineeship (IGERT), Institute for Cellular Engineering [DGE-0654128]
  3. National Institutes of Health Chemistry-Biology Interface Training Grant [T32GM00815]
  4. Div Of Biological Infrastructure
  5. Direct For Biological Sciences [1126366] Funding Source: National Science Foundation

向作者/读者索取更多资源

For nonenveloped viruses such as Simian Virus 40, the mechanism used to translocate viral components across membranes is poorly understood. Previous results indicated that the minor structural proteins, VP2 and VP3, might act as membrane proteins during infection. Here, purified VP2 and VP3 were found to form pores in host cell membranes. To identify possible membrane domains, individual hydrophobic domains from VP2 and VP3 were expressed in a model protein and tested for their ability to integrate into membranes. Several domains from the late proteins supported endoplasmic reticulum membrane insertion as transmembrane domains. Mutations in VP2 and VP3 were engineered that inhibited membrane insertion and pore formation. When these mutations were introduced into the viral genome, viral propagation was inhibited. This comprehensive approach revealed that the viroporin activity of VP2 and VP3 was inhibited by targeted disruptions of individual hydrophobic domains and the loss of membrane disruption activity impaired viral infection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据