4.6 Article

Mechanism for Release of Alkaline Phosphatase Caused by Glycosylphosphatidylinositol Deficiency in Patients with Hyperphosphatasia Mental Retardation Syndrome

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 287, 期 9, 页码 6318-6325

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.331090

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology
  2. Ministry of Health, Labor and Welfare of Japan
  3. Grants-in-Aid for Scientific Research [21247018, 23590363, 23790365] Funding Source: KAKEN

向作者/读者索取更多资源

Hyperphosphatasia mental retardation syndrome (HPMR), an autosomal recessive disease characterized by mental retardation and elevated serum alkaline phosphatase (ALP) levels, is caused by mutations in the coding region of the phosphatidylinositol glycan anchor biosynthesis, class V (PIGV) gene, the product of which is a mannosyltransferase essential for glycosylphosphatidylinositol (GPI) biosynthesis. Mutations found in four families caused amino acid substitutions A341E, A341V, Q256K, and H385P, which drastically decreased expression of the PIGV protein. Hyperphosphatasia resulted from secretion of ALP, a GPI-anchored protein normally expressed on the cell surface, into serum due to PIGV deficiency. In contrast, a previously reported PIGM deficiency, in which there is a defect in the transfer of the first mannose, does not result in hyperphosphatasia. To provide insights into the mechanism of ALP secretion in HPMR patients, we took advantage of CHO cell mutants that are defective in various steps of GPI biosynthesis. Secretion of ALP requires GPI transamidase, which in normal cells, cleaves the C-terminal GPI attachment signal peptide and replaces it with GPI. The GPI-anchored protein was secreted substantially into medium from PIGV-, PIGB-, and PIGF-deficient CHO cells, in which incomplete GPI bearing mannose was accumulated. In contrast, ALP was degraded in PIGL-, DPM2-, or PIGX-deficient CHO cells, in which incomplete shorter GPIs that lacked mannose were accumulated. Our results suggest that GPI transamidase recognizes incomplete GPI bearing mannose and cleaves a hydrophobic signal peptide, resulting in secretion of soluble ALP. These results explain the molecular mechanism of hyperphosphatasia in HPMR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据