4.6 Article

Human MTH3 (NUDT18) Protein Hydrolyzes Oxidized Forms of Guanosine and Deoxyguanosine Diphosphates COMPARISON WITH MTH1 AND MTH2

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 287, 期 25, 页码 21541-21549

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M112.363010

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan
  2. MEXT-supported Program for the Strategic Research Foundation at Private Universities
  3. Grants-in-Aid for Scientific Research [22131007] Funding Source: KAKEN

向作者/读者索取更多资源

Most of the proteins carrying the 23-residue MutT-related sequence are capable of hydrolyzing compounds with a general structure of nucleoside diphosphate linked to another moiety X and are called the Nudix hydrolases. Among the 22 human Nudix proteins (identified by the sequence signature), some remain uncharacterized as enzymes without a defined substrate. Here, we reveal that the NUDT18 protein, whose substrate was unknown, can degrade 8-oxo-7,8-dihydroguanine (8-oxo-Gua)-containing nucleoside diphosphates to the monophosphates. Because this enzyme is closely related to MTH1 (NUDT1) and MTH2 (NUDT15), we propose that it should be named MTH3. Although these three human proteins resemble each other in their sequences, their substrate specificities differ considerably. MTH1 cleaves 8-oxo-dGTP but not 8-oxo-dGDP, whereas MTH2 can degrade both 8-oxo-dGTP and 8-oxo-dGDP, although the intrinsic enzyme activity of MTH2 is considerably lower than that of MTH1. On the other hand, MTH3 is specifically active against 8-oxo-dGDP and hardly cleaves 8-oxodGTP. Other types of oxidized nucleoside diphosphates, 2-hydroxy-dADP and 8-hydroxy-dADP, were also hydrolyzed by MTH3. Another notable feature of the MTH3 enzyme is its action toward the ribonucleotide counterpart. MTH3 can degrade 8-oxo-GDP as efficiently as 8-oxo-dGDP, which is in contrast to the finding that MTH1 and MTH2 show a limited activity against the ribonucleotide counterpart, 8-oxo-GTP. These three enzymes may function together to help maintain the high fidelity of DNA replication and transcription under oxidative stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据