4.6 Article

Limonoid Compounds Inhibit Sphingomyelin Biosynthesis by Preventing CERT Protein-dependent Extraction of Ceramides from the Endoplasmic Reticulum

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 287, 期 29, 页码 24397-24411

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M112.344432

关键词

-

资金

  1. Lipid Dynamics Program of RIKEN
  2. Ministry of Education, Culture, Sports, Science, and Technology of Japan [22390018, 24657143]
  3. Grants-in-Aid for Scientific Research [22370054, 22390018, 23790115, 24657143] Funding Source: KAKEN

向作者/读者索取更多资源

To identify novel inhibitors of sphingomyelin (SM) metabolism, a new and selective high throughput microscopy-based screening based on the toxicity of the SM-specific toxin, lysenin, was developed. Out of a library of 2011 natural compounds, the limonoid, 3-chloro-8 beta-hydroxycarapin-3,8-hemiacetal (CHC), rendered cells resistant to lysenin by decreasing cell surface SM. CHC treatment selectively inhibited the de novo biosynthesis of SM without affecting glycolipid and glycerophospholipid biosynthesis. Pretreatment with brefeldin A abolished the limonoid-induced inhibition of SM synthesis suggesting that the transport of ceramide (Cer) from the endoplasmic reticulum to the Golgi apparatus is affected. Unlike the Cer transporter (CERT) inhibitor HPA-12, CHC did not change the transport of a fluorescent short chain Cer analog to the Golgi apparatus or the formation of fluorescent and short chain SM from the corresponding Cer. Nevertheless, CHC inhibited the conversion of de novo synthesized Cer to SM. We show that CHC specifically inhibited the CERT-mediated extraction of Cer from the endoplasmic reticulum membranes in vitro. Subsequent biochemical screening of 21 limonoids revealed that some of them, such as 8 beta-hydroxycarapin-3,8-hemiacetal and gedunin, which exhibits anti-cancer activity, inhibited SM biosynthesis and CERT-mediated extraction of Cer from membranes. Model membrane studies suggest that 8 beta-hy-droxycarapin-3,8-hemiacetal reduced the miscibility of Cer with membrane lipids and thus induced the formation of Cerrich membrane domains. Our study shows that certain limonoids are novel inhibitors of SM biosynthesis and suggests that some biological activities of these limonoids are related to their effect on the ceramide metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据