4.6 Article

CTRP1 Protein Enhances Fatty Acid Oxidation via AMP-activated Protein Kinase (AMPK) Activation and Acetyl-CoA Carboxylase (ACC) Inhibition

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 287, 期 2, 页码 1576-1587

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.278333

关键词

-

资金

  1. National Institutes of Health [DK084171]
  2. American Heart Association [SDG2260721, PRE3790034]
  3. Baltimore Diabetes Research and Training Center (DRTC) [P60DK079637]
  4. National Institutes of Health National Research Service [F32DK084607]

向作者/读者索取更多资源

We previously described the adipokine CTRP1, which has up-regulated expression following exposure to the anti-diabetic drug rosiglitazone and increased circulating levels in adiponectin-null mice (Wong, G. W., Krawczyk, S. A., Kitidis-Mitrokostas, C., Revett, T., Gimeno, R., and Lodish, H. F. (2008) Biochem. J. 416, 161-177). Although recombinant CTRP1 lowers blood glucose in mice, its physiological function, mechanisms of action, and roles in metabolic stress remain unknown. Here, we show that circulating levels of CTRP1 are strikingly reduced in diet-induced obese mice. Overexpressing CTRP1 in transgenic mice improved insulin sensitivity and decreased high-fat diet-induced weight gain. Reduced adiposity resulted from enhanced fatty acid oxidation and energy expenditure, effects mediated by AMP-activated protein kinase (AMPK). In skeletal muscle of transgenic mice, AMPK alpha and its downstream target, acetyl-CoA carboxylase (ACC), were hyperphosphorylated, indicative of AMPK activation and ACC inhibition. Inactivation of ACC promotes mitochondrial fat oxidation. Consistent with the direct effect of CTRP1 on AMPK signaling, recombinant CTRP1 administration acutely stimulated muscle AMPK alpha and ACC phosphorylation in vivo. In isolated soleus muscle, recombinant CTRP1 activated AMPK signaling to increase fatty acid oxidation ex vivo, an effect abrogated by an AMPK inhibitor. These results provide the first in vivo evidence that CTRP1 is a novel regulator of fatty acid metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据