4.6 Article

Two Novel Classes of Enzymes Are Required for the Biosynthesis of Aurofusarin in Fusarium graminearum

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 286, 期 12, 页码 10419-10428

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110.179853

关键词

-

资金

  1. Danish Ministry for Food, Agriculture and Fisheries
  2. Danish Research Council for Technology and Production Sciences [274-06-0371]

向作者/读者索取更多资源

Previous studies have reported the functional characterization of 9 out of 11 genes found in the gene cluster responsible for biosynthesis of the polyketide pigment aurofusarin in Fusarium graminearum. Here we reanalyze the function of a putative aurofusarin pump (AurT) and the two remaining orphan genes, aurZ and aurS. Targeted gene replacement of aurZ resulted in the discovery that the compound YWA1, rather than nor-rubrofusarin, is the primary product of F. graminearum polyketide synthase 12 (FgPKS12). AurZ is the first representative of a novel class of dehydratases that act on hydroxylated gamma-pyrones. Replacement of the aurS gene resulted in accumulation of rubrofusarin, an intermediate that also accumulates when the GIP1, aurF, or aurO genes in the aurofusarin cluster are deleted. Based on the shared phenotype and predicted subcellular localization, we propose that AurS is a member of an extracellular enzyme complex (GIP1-AurF-AurO-AurS) responsible for converting rubrofusarin into aurofusarin. This implies that rubrofusarin, rather than aurofusarin, is pumped across the plasma membrane. Replacement of the putative aurofusarin pump aurT increased the rubrofusarin-to-aurofusarin ratio, supporting that rubrofusarin is normally pumped across the plasma membrane. These results provide functional information on two novel classes of proteins and their contribution to polyketide pigment biosynthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据