4.6 Article

N,N′-Dinitrosopiperazine-mediated Ezrin Protein Phosphorylation via Activation of Rho Kinase and Protein Kinase C Is Involved in Metastasis of Nasopharyngeal Carcinoma 6-10B Cells

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 286, 期 42, 页码 36956-36967

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.259234

关键词

-

资金

  1. National Natural Science Foundation of China [81071718, 81000881, 30973400, 30572455]
  2. Program for New Century Excellent Talents in University [NCET-06-0685]
  3. Technology Foundation of Hunan [08FJ3176]
  4. Science Foundation of Central South University [08SDF07]
  5. Department of Pathology of Xiangya Hospital, Central South University
  6. Youping Sun of BEST Inc.

向作者/读者索取更多资源

N,N'-Dinitrosopiperazine (DNP) is a carcinogen for nasopharyngeal carcinoma (NPC), which shows organ specificity to nasopharyngeal epithelium. Herein, we demonstrate that DNP induces fiber formation of NPC cells (6-10B) and also increases invasion and motility of 6-10B cells. DNP-mediated NPC metastasis also was confirmed in nude mice. Importantly, DNP induced the expression of phosphorylated ezrin (phos-ezrin) at threonine 567 (Thr-567) dose-and time-dependently but had no effect on the total ezrin expression at these concentrations. Furthermore, DNP-induced phos-ezrin expression was dependent on increased Rho kinase and protein kinase C (PKC) activity. DNP may activate Rho kinase through binding to its pleckstrin homology and may activate PKC through promoting its translocation to the plasma membrane in vivo. DNP-induced phos-ezrin was associated with induction of fiber growth in 6-10B cells. However, DNP could not induce motility and invasion of NPC cells containing ezrin mutated at Thr-567. Similarly, DNP could not induce motility and invasion of the cells containing siRNAs against Rho or PKC. These results indicate that DNP induces ezrin phosphorylation at Thr-567, increases motility and invasion of cells, and promotes tumor metastasis. DNP may be involved in NPC metastasis through regulation of ezrin phosphorylation at Thr-567.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据