4.6 Article

Silencing of the GDP-D-mannose 3,5-Epimerase Affects the Structure and Cross-linking of the Pectic Polysaccharide Rhamnogalacturonan II and Plant Growth in Tomato

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 286, 期 10, 页码 8014-8020

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110.198614

关键词

-

资金

  1. University of Rouen

向作者/读者索取更多资源

L-Galactose (L-Gal), a monosaccharide involved in L-ascorbate and rhamnogalacturonan II (RG-II) biosynthesis in plants, is produced in the cytosol by a GDP-D-mannose 3,5-epimerase (GME). It has been recently reported that the partial inactivation of GME induced growth defects affecting both cell division and cell expansion (Gilbert, L., Alhagdow, M., Nunes-Nesi, A., Quemener, B., Guillon, F., Bouchet, B., Faurobert, M., Gouble, B., Page, D., Garcia, V., Petit, J., Stevens, R., Causse, M., Fernie, A. R., Lahaye, M., Rothan, C., and Baldet, P. (2009) Plant J. 60, 499-508). In the present study, we show that the silencing of the two GME genes in tomato leaves resulted in approximately a 60% decrease in terminal L-Gal content in the side chain A of RG-II as well as in a lower capacity of RG-II to perform in muro cross-linking. In addition, we show that unlike supplementation with L-Gal or ascorbate, supplementation of GME-silenced lines with boric acid was able to restore both the wild-type growth phenotype of tomato seedlings and an efficient in muro boron-mediated cross-linking of RG-II. Our findings suggest that developmental phenotypes in GME-deficient lines are due to the structural alteration of RG-II and further underline the crucial role of the cross-linking of RG-II in the formation of the pectic network required for normal plant growth and development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据