4.6 Article

CB2 Cannabinoid Receptors Promote Neural Progenitor Cell Proliferation via mTORC1 Signaling

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 287, 期 2, 页码 1198-1209

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.291294

关键词

-

资金

  1. Ministerio de Ciencia e Innovacion [PLE2009-0117, SAF2009-08403]
  2. Comunidad de Madrid-Universidad Complutense de Madrid [S-SAL-2006/261, 950344]
  3. Fondo de Investigaciones Sanitarias

向作者/读者索取更多资源

The endocannabinoid system is known to regulate neural progenitor (NP) cell proliferation and neurogenesis. In particular, CB2 cannabinoid receptors have been shown to promote NP proliferation. As CB2 receptors are not expressed in differentiated neurons, CB2-selective agonists are promising candidates to manipulate NP proliferation and indirectly neurogenesis by overcoming the undesired psychoactive effects of neuronal CB1 cannabinoid receptor activation. Here, by using NP cells, brain organotypic cultures, and in vivo animal models, we investigated the signal transduction mechanism involved in CB2 receptor-induced NP cell proliferation and neurogenesis. Exposure of hippocampal HiB5 NP cells to the CB2 receptor-selective agonist HU-308 led to the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin complex 1 (mTORC1) pathway, which, by inhibiting its downstream target p27Kip1, induced NP proliferation. Experiments conducted with the CB2 receptor-selective antagonist SR144528, inhibitors of the PI3K/Akt/mTORC1 axis, and CB2 receptor transient-transfection vector further supported that CB2 receptors control NP cell proliferation via activation of mTORC1 signaling. Likewise, CB2 receptor engagement induced cell proliferation in an mTORC1-dependent manner both in embryonic cortical slices and in adult hippocampal NPs. Thus, HU-308 increased ribosomal protein S6 phosphorylation and 5-bromo-2'-deoxyuridine incorporation in wild-type but not CB2 receptor-deficient NPs of the mouse subgranular zone. Moreover, adult hippocampal NP proliferation induced by HU-308 and excitotoxicity was blocked by the mTORC1 inhibitor rapamycin. Altogether, these findings provide a mechanism of action and a rationale for the use of nonpsychotomimetic CB2 receptor-selective ligands as a novel strategy for the control of NP cell proliferation and neurogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据