4.6 Article

Crystal Structures of Human TBC1D1 and TBC1D4 (AS160) RabGTPase-activating Protein (RabGAP) Domains Reveal Critical Elements for GLUT4 Translocation

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 286, 期 20, 页码 18130-18138

出版社

ELSEVIER
DOI: 10.1074/jbc.M110.217323

关键词

-

资金

  1. National Institutes of Health [R01 DK43123, R01 DK51729, F32 DK77485, P30 DK36836]
  2. United States Department of Energy, Division of Materials Sciences and Division of Chemical Sciences [DE-AC02-98CH10886]

向作者/读者索取更多资源

We have solved the x-ray crystal structures of the RabGAP domains of human TBC1D1 and human TBC1D4 (AS160), at 2.2 and 3.5 angstrom resolution, respectively. Like the yeast Gyp1p RabGAP domain, whose structure was solved previously in complex with mouse Rab33B, the human TBC1D1 and TBC1D4 domains both have 16 alpha-helices and no beta-sheet elements. We expected the yeast Gyp1p RabGAP/mouse Rab33B structure to predict the corresponding interfaces between cognate mammalian RabGAPs and Rabs, but found that residues were poorly conserved. We further tested the relevance of this model by Ala-scanning mutagenesis, but only one of five substitutions within the inferred binding site of the TBC1D1 RabGAP significantly perturbed catalytic efficiency. In addition, substitution of TBC1D1 residues with corresponding residues from Gyp1p did not enhance catalytic efficiency. We hypothesized that biologically relevant RabGAP/Rab partners utilize additional contacts not described in the yeast Gyp1p/mouse Rab33B structure, which we predicted using our two new human TBC1D1 and TBC1D4 structures. Ala substitution of TBC1D1 Met(930), corresponding to a residue outside of the Gyp1p/Rab33B contact, substantially reduced catalytic activity. GLUT4 translocation assays confirmed the biological relevance of our findings. Substitutions with lowest RabGAP activity, including catalytically dead RK and Met(930) and Leu(1019) predicted to perturb Rab binding, confirmed that biological activity requires contacts between cognate RabGAPs and Rabs beyond those in the yeast Gyp1p RabGAP/mouse Rab33B structure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据