4.6 Article

Structure of TatA Paralog, TatE, Suggests a Structurally Homogeneous Form of Tat Protein Translocase That Transports Folded Proteins of Differing Diameter

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 287, 期 10, 页码 7335-7344

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.326355

关键词

-

资金

  1. Transys ITN (Marie Curie Initial Training Network) [215524]
  2. Wellcome Trust [055663/Z/98/Z]
  3. BBSRC [BB/E010245/1] Funding Source: UKRI
  4. Biotechnology and Biological Sciences Research Council [BB/E010245/1] Funding Source: researchfish

向作者/读者索取更多资源

The twin-arginine translocation (Tat) system transports folded proteins across bacterial and plant thylakoid membranes. Most current models for the translocation mechanism propose the coalescence of a substrate-binding TatABC complex with a separate TatA complex. In Escherichia coli, TatA complexes are widely believed to form the translocation pore, and the size variation of TatA has been linked to the transport of differently sized substrates. Here, we show that the TatA paralog TatE can substitute for TatA and support translocation of Tat substrates including AmiA, AmiC, and TorA. However, TatE is found as much smaller, discrete complexes. Gel filtration and blue native electrophoresis suggest sizes between similar to 50 and 110 kDa, and single-particle processing of electron micrographs gives size estimates of 70-90 kDa. Three-dimensional models of the two principal TatE complexes show estimated diameters of 6-8 nm and potential clefts or channels of up to 2.5 nm diameter. The ability of TatE to support translocation of the 90-kDa TorA protein suggests alternative translocation models in which single TatA/E complexes do not contribute the bulk of the translocation channel. The homogeneity of both the TatABC and the TatE complexes further suggests that a discrete Tat translocase can translocate a variety of substrates, presumably through the use of a flexible channel. The presence and possible significance of double- or triple-ring TatE forms is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据