4.6 Article

The RhoG/ELMO1/Dock180 Signaling Module Is Required for Spine Morphogenesis in Hippocampal Neurons

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 286, 期 43, 页码 37615-37624

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.268029

关键词

-

资金

  1. National Institutes of Health [GM070902, NS065183]
  2. National Alliance for Research on Schizophrenia and Depression (NARSAD)
  3. Chungnam National University

向作者/读者索取更多资源

Dendritic spines are actin-rich structures, the formation and plasticity of which are regulated by the Rho GTPases in response to synaptic input. Although several guanine nucleotide exchange factors (GEFs) have been implicated in spine development and plasticity in hippocampal neurons, it is not known how many different Rho GEFs contribute to spine morphogenesis or how they coordinate the initiation, establishment, and maintenance of spines. In this study, we screened 70 rat Rho GEFs in cultured hippocampal neurons by RNA interference and identified a number of candidates that affected spine morphogenesis. Of these, Dock180, which plays a pivotal role in a variety of cellular processes including cell migration and phagocytosis, was further investigated. We show that depletion of Dock180 inhibits spine morphogenesis, whereas overexpression of Dock180 promotes spine morphogenesis. ELMO1, a protein necessary for in vivo functions of Dock180, functions in a complex with Dock180 in spine morphogenesis through activating the Rac GTPase. Moreover, RhoG, which functions upstream of the ELMO1/Dock180 complex, is also important for spine formation. Together, our findings uncover a role for the RhoG/ELMO1/Dock180 signaling module in spine morphogenesis in hippocampal neurons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据