4.6 Article

Molecular Characterization of the MicroRNA-138-Fos-like Antigen 1 (FOSL1) Regulatory Module in Squamous Cell Carcinoma

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 286, 期 46, 页码 40104-40109

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.C111.296707

关键词

-

资金

  1. National Institutes of Health Grant Public Health Service [CA135992, CA139596, DE014847]
  2. UIC Center for Clinical and Translational Science (CCTS) [UL1RR029879]
  3. National Institutes of Health [DE018381]

向作者/读者索取更多资源

MicroRNA-138 is one of the most frequently down-regulated microRNAs in cancer. We recently identified 51 candidate targets of microRNA-138 (Jiang, L., Dai, Y., Liu, X., Wang, C., Wang, A., Chen, Z., Heidbreder, C. E., Kolokythas, A., and Zhou, X. (2011) Hum. Genet. 129, 189-197). Among these candidates, Fos-like antigen 1 (FOSL1) is a member of Fos gene family and is a known proto-oncogene. In this study, we first confirmed the microRNA-138-mediated down-regulation of FOSL1 in squamous cell carcinoma cell lines. We then demonstrated the effect of this microRNA-138-FOSL1 regulatory module on downstream genes (homolog of Snail 2 (Snai2) expression and the Snai2-mediated repression of E-cadherin expression), as well as its contributions to tumorigenesis. The microRNA-138-directed recruitment of FOSL1 mRNA to the RNAi-induced silencing complex was confirmed by a ribonucleoprotein-immunoprecipitation assay. Three canonical and three high affinity non-canonical microRNA-138 (miR-138) targeting sites were identified on the FOSL1 mRNA: one in the 5'-UTR, three overlapping sites in the coding sequences, and two overlapping sites in the 3'-UTR. The direct targeting of miR-138 to these sites was confirmed using luciferase reporter gene assays. In summary, we describe an important microRNA regulatory module, which may play an important role in cancer initiation and progression. Our results also provide evidence that microRNAs target both canonical and non-canonical targeting sites located in all areas of the mRNA molecule (e. g. 5'-UTR, coding sequences, and 3'-UTR).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据