4.6 Article

Na+-translocating Membrane Pyrophosphatases Are Widespread in the Microbial World and Evolutionarily Precede H+-translocating Pyrophosphatases

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 286, 期 24, 页码 21633-21642

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M111.244483

关键词

-

资金

  1. Academy of Finland [114706, 130581, 139031]
  2. Ministry of Education of Finland
  3. Russian Foundation for Basic Research [09-04-00869]
  4. Academy of Finland (AKA) [114706, 130581, 139031, 139031, 114706, 130581] Funding Source: Academy of Finland (AKA)

向作者/读者索取更多资源

Membrane pyrophosphatases (PPases), divided into K+-dependent and K+-independent subfamilies, were believed to pump H+ across cell membranes until a recent demonstration that some K+-dependent PPases function as Na+ pumps. Here, we have expressed seven evolutionarily important putative PPases in Escherichia coli and estimated their hydrolytic, Na+ transport, and H+ transport activities as well as their K+ and Na+ requirements in inner membrane vesicles. Four of these enzymes (from Anaerostipes caccae, Chlorobium limicola, Clostridium tetani, and Desulfuromonas acetoxidans) were identified as K+-dependent Na+ transporters. Phylogenetic analysis led to the identification of a monophyletic clade comprising characterized and predicted Na+-transporting PPases (Na+-PPases) within the K+-dependent subfamily. H+-transporting PPases (H+-PPases) are more heterogeneous and form at least three independent clades in both subfamilies. These results suggest that rather than being a curious rarity, Na+-PPases predominantly constitute the K+-dependent subfamily. Furthermore, Na+-PPases possibly preceded H+-PPases in evolution, and transition from Na+ to H+ transport may have occurred in several independent enzyme lineages. Site-directed mutagenesis studies facilitated the identification of a specific Glu residue that appears to be central in the transport mechanism. This residue is located in the cytoplasm-membrane interface of transmembrane helix 6 in Na+-PPases but shifted to within the membrane or helix 5 in H+-PPases. These results contribute to the prediction of the transport specificity and K+ dependence for a particular membrane PPase sequence based on its position in the phylogenetic tree, identity of residues in the K+ dependence signature, and position of the membrane-located Glu residue.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据