4.6 Article

Neutral Sphingomyelinase-2 Mediates Growth Arrest by Retinoic Acid through Modulation of Ribosomal S6 Kinase

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 286, 期 24, 页码 21565-21576

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110.193375

关键词

-

资金

  1. National Institutes of Health [GM 43825]
  2. American Heart Association
  3. National Center for Research Resources [C06 RR01882]

向作者/读者索取更多资源

All-trans-retinoic acid (ATRA) induces growth arrest of many cell types. Previous studies have reported that ATRA can modulate cellular sphingolipids, but the role of sphingolipids in the ATRA response is not clear. Using MCF-7 cells as a model system, we show that ATRA stimulates an increase in ceramide levels followed by G(0)/G(1) growth arrest. Notably, induction of nSMase2 was the primary effect of ATRA on the sphingolipid network and was both time-and dose-dependent. Importantly, pretreatment with nSMase2 siRNA significantly inhibited ATRA effects on ceramide levels and growth arrest. In contrast, nSMase2 overexpression was sufficient to increase ceramide levels and induce G(0)/G(1) growth arrest of asynchronous MCF-7 cells. Surprisingly, neither ATRA stimulation nor nSMase2 overexpression had significant effects on classical cell cycle regulators such as p21/WAF1 or retinoblastoma. In contrast, ATRA suppressed phosphorylation of ribosomal S6 kinase (S6K) and its downstream targets S6 and eIF4B. Importantly, these effects were significantly inhibited by nSMase2 siRNA. Reciprocally, nSMase2 overexpression was sufficient to suppress S6K phosphorylation and signaling. Notably, neither ATRA effects nor nSMase2 effects on S6K phosphorylation required the ceramide-activated protein phosphatase PP2A, previously identified as important for S6K regulation. Finally, nSMase2 overexpression was sufficient to decrease translation as measured by methionine incorporation and analysis of polyribosome profiles. Taken together, these results implicate nSMase2 as a major component of ATRA-induced growth arrest of MCF-7 cells and identify S6K as a novel downstream target of nSMase2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据