4.6 Article

Impaired Peroxisome Proliferator-activated Receptor-γ Contributes to Phenotypic Modulation of Vascular Smooth Muscle Cells during Hypertension

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 285, 期 18, 页码 13666-13677

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.087718

关键词

-

资金

  1. National Natural Science Foundation of China [30800444]

向作者/读者索取更多资源

The phenotypic modulation of vascular smooth muscle cells (VSMCs) plays a pivotal role in hypertension-induced vascular changes including vascular remodeling. The precise mechanisms underlying VSMC phenotypic modulation remain elusive. Here we test the role of peroxisome proliferator-activated receptor (PPAR)-gamma in the VSMC phenotypic modulation during hypertension. Both spontaneously hypertensive rat (SHR) aortas and SHR-derived VSMCs exhibited reduced PPAR-gamma expression and excessive VSMC phenotypic modulation identified by reduced contractile proteins, alpha-smooth muscle actin (alpha-SMA) and smooth muscle 22 alpha (SM22 alpha), and enhanced proliferation and migration. PPAR-gamma overexpression rescued the expression of alpha-SMA and SM22 alpha, and inhibited the proliferation and migration in SHR-derived VSMCs. In contrast, PPAR-gamma silencing exerted the opposite effect. Activating PPAR-gamma using rosiglitazone in vivo up-regulated aortic alpha-SMA and SM22 alpha expression and attenuated aortic remodeling in SHRs. Increased activation of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling was observed in SHR-derived VSMCs. PI3K inhibitor LY294002 rescued the impaired expression of contractile proteins, and inhibited proliferation and migration in VSMCs from SHRs, whereas constitutively active PI3K mutant had the opposite effect. Overexpression or silencing of PPAR-gamma inhibited or excited PI3K/Akt activity, respectively. LY294002 counteracted the PPAR-gamma silencing induced proliferation and migration in SHR-derived VSMCs, whereas active PI3K mutant had the opposite effect. In contrast, reduced proliferation and migration by PPAR-gamma overexpression were reversed by the active PI3K mutant, and further inhibited by LY294002. We conclude that PPAR-gamma inhibits VSMC phenotypic modulation through inhibiting PI3K/Akt signaling. Impaired PPAR-gamma expression is responsible for VSMC phenotypic modulation during hypertension. These findings highlight an attractive therapeutic target for hypertension-related vascular disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据