4.6 Article

Structure of a Class I Tagatose-1,6-bisphosphate Aldolase INVESTIGATION INTO AN APPARENT LOSS OF STEREOSPECIFICITY

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 285, 期 27, 页码 21143-21152

出版社

ELSEVIER
DOI: 10.1074/jbc.M109.080358

关键词

-

资金

  1. Natural Science and Engineering Research Council (Canada)
  2. Canadian Institutes for Health Research
  3. Offices of Biological and Environmental Research and of Basic Energy Sciences of the United States Department of Energy
  4. National Center for Research Resources of the National Institutes of Health

向作者/读者索取更多资源

Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes is a class I aldolase that exhibits a remarkable lack of chiral discrimination with respect to the configuration of hydroxyl groups at both C3 and C4 positions. The enzyme catalyzes the reversible cleavage of four diastereoisomers (fructose 1,6-bisphosphate (FBP), psicose 1,6-bisphosphate, sorbose 1,6-bisphosphate, and tagatose 1,6-bisphosphate) to dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde 3-phosphate with high catalytic efficiency. To investigate its enzymatic mechanism, high resolution crystal structures were determined of both native enzyme and native enzyme in complex with dihydroxyacetone-P. The electron density map revealed a (alpha/beta)(8) fold in each dimeric subunit. Flash-cooled crystals of native enzyme soaked with dihydroxyacetone phosphate trapped a covalent intermediate with carbanionic character at Lys(205), different from the enamine mesomer bound in stereospecific class I FBP aldolase. Structural analysis indicates extensive active site conservation with respect to class I FBP aldolases, including conserved conformational responses to DHAP binding and conserved stereospecific proton transfer at the DHAP C3 carbon mediated by a proximal water molecule. Exchange reactions with tritiated water and tritium-labeled DHAP at C3 hydrogen were carried out in both solution and crystalline state to assess stereochemical control at C3. The kinetic studies show labeling at both pro-R and pro-S C3 positions of DHAP yet detritiation only at the C3 pro-S-labeled position. Detritiation of the C3 pro-R label was not detected and is consistent with preferential cis-trans isomerism about the C2-C3 bond in the carbanion as the mechanism responsible for C3 epimerization in tagatose-1,6-bisphosphate aldolase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据