4.6 Article

Golgi N-Glycosyltransferases Form Both Homo- and Heterodimeric Enzyme Complexes in Live Cells

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 285, 期 23, 页码 17771-17777

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110.103184

关键词

-

资金

  1. Academy of Finland
  2. University of Oulu
  3. Finnish Glycoscience Graduate School

向作者/读者索取更多资源

Glycans (i.e. oligosaccharide chains attached to cellular proteins and lipids) are crucial for nearly all aspects of life, including the development of multicellular organisms. They come in multiple forms, and much of this diversity between molecules, cells, and tissues is generated by Golgi-resident glycosidases and glycosyltransferases. However, their exact mode of functioning in glycan processing is currently unclear. Here we investigate the supramolecular organization of the N-glycosylation pathway in live cells by utilizing the bimolecular fluorescence complementation approach. We show that all four N-glycosylation enzymes tested (beta-1,2-N-acetylglucosaminyltransferase I, beta-1,2-N-acetylglucosaminyltransferase II, 1,4-galactosyltransferaseI,and alpha-2,6-sialyltransferaseI)form Golgi-localizedhomodimers. Intriguingly, the same enzymes also formed two distinct and functionally relevant heterodimers between the medial Golgi enzymes beta-1,2-N-acetylglucosaminyltransferase I and beta-1,2-N-acetylglucosaminyltransferase II and the trans-Golgi enzymes 1,4-galactosyltransferase I and alpha-2,6-sialyltransferase I. Given their strict Golgi localization and sequential order of function, the two heterodimeric complexes are probably responsible for the processing and maturation of N-glycans in live cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据