4.6 Article

N-Glycans of Phaeodactylum tricornutum Diatom and Functional Characterization of Its N-Acetylglucosaminyltransferase I Enzyme

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 286, 期 8, 页码 6152-6164

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110.175711

关键词

-

资金

  1. University of Rouen

向作者/读者索取更多资源

N-Glycosylation, a major co- and post-translational event in the synthesis of proteins in eukaryotes, is unknown in aquatic photosynthetic microalgae. In this paper, we describe the N-glycosylation pathway in the diatom Phaeodactylum tricornutum. Bio-informatic analysis of its genome revealed the presence of a complete set of sequences potentially encoding for proteins involved in the synthesis of the lipid-linked Glc(3)Man(9)GlcNAc(2)-PP-dolichol N-glycan, some subunits of the oligosaccharyltransferase complex, as well as endoplasmic reticulum glucosidases and chaperones required for protein quality control and, finally, the alpha-mannosidase I involved in the trimming of the N-glycan precursor into Man-5 N-glycan. Moreover, one N-acetylglucosaminyltransferase I, a Golgi glycosyltransferase that initiates the synthesis of complex type N-glycans, was predicted in the P. tricornutum genome. We demonstrated that this gene encodes for an active N-acetylglucosaminyltransferase I, which is able to restore complex type N-glycans maturation in the Chinese hamster ovary Lec1 mutant, defective in its endogeneous N-acetylglucosaminyltransferase I. Consistent with these data, the structural analyses of N-linked glycans demonstrated that P. tricornutum proteins carry mainly high mannose type N-glycans ranging from Man-5 to Man-9. Although representing a minor glycan population, paucimannose N-glycans were also detected, suggesting the occurrence of an N-acetylglucosaminyltransferase I-dependent maturation of N-glycans in this diatom.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据