4.6 Article

Structural Characterization of OxyD, a Cytochrome P450 Involved in β-Hydroxytyrosine Formation in Vancomycin Biosynthesis

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 285, 期 32, 页码 24562-24574

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110.131904

关键词

-

资金

  1. Human Frontier Science Program (Cross Disciplinary Fellowship)

向作者/读者索取更多资源

The cytochrome P450 OxyD from the balhimycin glycopeptide antibiotic biosynthetic operon of Amycolatopsis mediterranei is involved in the biosynthesis of the modified amino acid beta-R-hydroxytyrosine,an essential precursor for biosynthesis of the vancomycin-type aglycone. OxyD binds the substrate tyrosine not free in solution, but rather covalently linked to the carrier protein (CP) domain of the non-ribosomal peptide synthase BpsD, exhibiting micromolar binding affinity to a tyrosine-loaded carrier protein construct. The crystal structure of OxyD was determined to 2.1-angstrom resolution, revealing a potential binding site for the carrier protein-bound substrate in a different orientation to that seen with the acyl carrier protein-bound P450(BioI) (Cryle, M. J., and Schlichting, I. (2008) Proc. Natl. Acad. Sci. U. S. A. 105, 15696-15701). A series of residues were identified across known aminoacyl-CP-oxidizing P450s that are highly conserved and cluster in the active site or potential CP binding site of OxyD. These residues appear to be characteristic for aminoacyl-CP-oxidizing P450s, allowing sequence based identification of P450 function for this subgroup of P450s that play vital roles in the biosyntheses of many important natural products in addition to the vancomycin-type antibiotics. The ability to analyze such P450 function based upon sequence data alone should prove an important tool in the analysis and identification of new medicinally relevant biomolecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据