4.6 Article

Polycystin-2 Activation by Inositol 1,4,5-Trisphosphate-induced Ca2+ Release Requires Its Direct Association with the Inositol 1,4,5-Trisphosphate Receptor in a Signaling Microdomain

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 285, 期 24, 页码 18794-18805

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.090662

关键词

-

资金

  1. K.U. Leuven [GOA/09/012]
  2. Flemish National Science Foundation [G.0210.03]
  3. Interuniversity Attraction Poles Programme [P6/28]

向作者/读者索取更多资源

Autosomal dominant polycystic kidney disease is characterized by the loss-of-function of a signaling complex involving polycystin-1 and polycystin-2 (TRPP2, an ion channel of the TRP superfamily), resulting in a disturbance in intracellular Ca2+ signaling. Here, we identified the molecular determinants of the interaction between TRPP2 and the inositol 1,4,5-trisphosphate receptor (IP3R), an intracellular Ca2+ channel in the endoplasmic reticulum. Glutathione S-transferase pulldown experiments combined with mutational analysis led to the identification of an acidic cluster in the C-terminal cytoplasmic tail of TRPP2 and a cluster of positively charged residues in the N-terminal ligand-binding domain of the IP3R as directly responsible for the interaction. To investigate the functional relevance of TRPP2 in the endoplasmic reticulum, we re-introduced the protein in TRPP2(-/-) mouse renal epithelial cells using an adenoviral expression system. The presence of TRPP2 resulted in an increased agonist-induced intracellular Ca2+ release in intact cells and IP3-induced Ca2+ release in permeabilized cells. Using pathological mutants of TRPP2, R740X and D509V, and competing peptides, we demonstrated that TRPP2 amplified the Ca2+ signal by a local Ca2+-induced Ca2+-release mechanism, which only occurred in the presence of the TRPP2-IP3R interaction, and not via altered IP3R channel activity. Moreover, our results indicate that this interaction was instrumental in the formation of Ca2+ microdomains necessary for initiating Ca2+-induced Ca2+ release. The data strongly suggest that defects in this mechanism may account for the altered Ca2+ signaling associated with pathological TRPP2 mutations and therefore contribute to the development of autosomal dominant polycystic kidney disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据