4.6 Article

Structural Determinants of Allosteric Agonism and Modulation at the M4 Muscarinic Acetylcholine Receptor IDENTIFICATION OF LIGAND-SPECIFIC AND GLOBAL ACTIVATION MECHANISMS

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 285, 期 25, 页码 19012-19021

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110.125096

关键词

-

资金

  1. National Health and Medical Research Council (NHMRC) of Australia [519461]

向作者/读者索取更多资源

The recently identified small molecule, 3-amino-5-chloro-6-methoxy-4-methylthieno[2,3-b]pyridine-2-carboxylic acid cyclopropylamide (LY2033298), is the first selective allosteric modulator of the muscarinic acetylcholine receptors (mAChRs) that mediates both receptor activation and positive modulation of the endogenous agonist, acetylcholine (ACh), via the same allosteric site on the M-4 mAChR. We thus utilized this novel chemical tool, as well as ACh, the bitopic (orthosteric/allosteric) agonist, McN-A-343, and the clinically efficacious M-1/M-4 mAChR-preferring agonist, xanomeline, in conjunction with site-directed mutagenesis of four different regions of the M-4 mAChR (extracellular loops 1, 2, and 3, and transmembrane domain 7), to identify regions that govern ligand-specific modes of binding, signaling, and allosteric modulation. In the first extracellular loop (E1), we identified Ile(93) and Lys(95) as key residues that specifically govern the signaling efficacy of LY2033298 and its binding cooperativity with ACh, whereas Phe(186) in the E2 loop was identified as a key contributor to the binding affinity of the modulator for the allosteric site, and Asp(432) in the E3 loop appears to be involved in the functional (activation) cooperativity between the modulator and the endogenous agonist. In contrast, the highly conserved transmembrane domain 7 residues, Tyr(439) and Tyr(443), were identified as contributing to a key activation switch utilized by all classes of agonists. These results provide new insights into the existence of multiple activation switches in G protein-coupled receptors (GPCRs), some of which can be selectively exploited by allosteric agonists, whereas others represent global activation mechanisms for all classes of ligand.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据