4.6 Article

Identification of a Key Residue Determining Substrate Affinity in the Yeast Glucose Transporter Hxt7 A TWO-DIMENSIONAL COMPREHENSIVE STUDY

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 285, 期 34, 页码 26263-26268

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110.149716

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science, and Technology of Japan
  2. Teikyo University

向作者/读者索取更多资源

We previously identified Asn(331) in transmembrane segment 7 (TM7) as a key residue determining substrate affinity in Hxt2, a moderately high-affinity facilitative glucose transporter of Saccharomyces cerevisiae. To gain further insight into the structural basis of substrate recognition by yeast glucose transporters, we have now studied Hxt7, whose affinity for glucose is the highest among the major hexose transporters. The functional role of Asp(340) in Hxt7, the residue corresponding to Asn(331) of Hxt2, was examined by replacing it with each of the other 19 amino acids. Such replacement of Asp(340) generated transporters with various affinities for glucose, with the affinity of the Cys(340) mutant surpassing that of the wild-type Hxt7. To examine the structural role of Asp(340) in the substrate translocation pathway, we performed cysteine-scanning mutagenesis of the 21 residues in TM7 of a functional Cys-less Hxt7 mutant in conjunction with exposure to the hydrophilic sulfhydryl reagent p-chloromercuribenzenesulfonate (pCMBS). The transport activity of the D340C mutant of Cys-less Hxt7, in which Asp(340) is replaced with Cys, was completely inhibited by pCMBS, indicating that Asp(340) is located in a water-accessible position. This D340C mutant showed a sensitivity to pCMBS that was similar to 70 times that of the wild-type Hxt7, and it was protected from pCMBS inhibition by the substrates D-glucose and 2-deoxy-D-glucose but not by L-glucose. These results indicate that Asp(340) is situated at or close to a substrate recognition site and is a key residue determining high-affinity glucose transport by Hxt7, supporting the notion that yeast glucose transporters share a common mechanism for substrate recognition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据