4.6 Article

Distinct Effects of Voltage- and Store-dependent Calcium Influx on Stretch-induced Differentiation and Growth in Vascular Smooth Muscle

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 285, 期 41, 页码 31829-31839

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.097576

关键词

-

资金

  1. Swedish Research Council [64X-28]
  2. Heart-Lung Foundation
  3. Medical Faculty, Lund University
  4. Torsten Foundation
  5. Ragnar Soderberg Foundation

向作者/读者索取更多资源

Stretch of the vascular wall stimulates smooth muscle hypertrophy by activating the MAPK and Rho/Rho kinase (ROK) pathways. We investigated the role of calcium in this response. Stretch-stimulated expression of contractile and cytoskeletal proteins in mouse portal vein was inhibited at mRNA and protein levels by blockade of voltage-dependent Ca2+ entry (VDCE). In contrast, blockade of store-operated Ca2+ entry (SOCE) did not affect smooth muscle marker expression but decreased global protein synthesis. Activation of VDCE caused membrane translocation of RhoA followed by phosphorylation of its downstream effectors LIMK-2 and cofilin-2. Stretch-activated cofilin-2 phosphorylation depended on VDCE but not on SOCE. VDCE was associated with increased mRNA expression of myocardin, myocyte enhancer factor (MEF) -2A and -2D, and smooth muscle marker genes, all of which depended on ROK activity. SOCE increased ERK1/2 phosphorylation and c-Fos expression but had no effect on phosphorylation of LIMK-2 and cofilin-2 or on myocardin and MEF2 expression. Knockdown of MEF2A or -2D eliminated the VDCE-induced activation of myocardin expression and increased basal c-Jun and c-Fos mRNA levels. These results indicate that MEF2 mediates VDCE dependent stimulation of myocardin expression via the Rho/ROK pathway. In addition, SOCE activates the expression of immediate-early genes, known to be regulated by MEF2 via Ca2+-dependent phosphorylation of histone deacetylases, but this mode of Ca2+ entry does not affect the Rho/ROK pathway. Compartmentation of Ca2+ entry pathways appears as one mechanism whereby extracellular and membrane signals influence smooth muscle phenotype regulation, with MEF2 as a focal point.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据