4.6 Article

Histidine Triad Nucleotide-binding Protein 1 (HINT-1) Phosphoramidase Transforms Nucleoside 5′-O-Phosphorothioates to Nucleoside 5′-O-Phosphates

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 285, 期 52, 页码 40809-40818

出版社

ELSEVIER
DOI: 10.1074/jbc.M110.162065

关键词

-

资金

  1. Polish Ministry of Science and Higher Education [NN204130137, PBZ-MNiSW-07/I/2007]

向作者/读者索取更多资源

Nucleoside 5'-O-phosphorothioates are formed in vivo as primary products of hydrolysis of oligo(nucleoside phosphorothioate)s (PS-oligos) that are applied as antisense therapeutic molecules. The biodistribution of PS-oligos and their pharmacokinetics have been widely reported, but little is known about their subsequent decay inside the organism. We suggest that the enzyme responsible for nucleoside 5'-O-monophosphorothioate ((d)NMPS) metabolism could be histidine triad nucleotide-binding protein 1 (Hint-1), a phosphoramidase belonging to the histidine triad (HIT) superfamily that is present in all forms of life. An additional, but usually ignored, activity of Hint-1 is its ability to catalyze the conversion of adenosine 5'-O-monophosphorothioate (AMPS) to 5'-O-monophosphate (AMP). By mutagenetic and biochemical studies, we defined the active site of Hint-1 and the kinetic parameters of the desulfuration reaction (P-S bond cleavage). Additionally, crystallographic analysis (resolution from 1.08 to 1.37 angstrom) of three engineered cysteine mutants showed the high similarity of their structures, which were not very different from the structure of WT Hint-1. Moreover, we found that not only AMPS but also other ribonucleoside and 2'-deoxyribonucleoside phosphorothioates are desulfurated by Hint-1 at the following relative rates: GMPS > AMPS > dGMPS >= CMPS > UMPS > dAMPS >> dCMPS > TMPS, and during the reaction, hydrogen sulfide, which is thought to be the third gaseous mediator, was released.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据