4.6 Article

Negative Regulation of EGFR-Vav2 Signaling Axis by Cbl Ubiquitin Ligase Controls EGF Receptor-mediated Epithelial Cell Adherens Junction Dynamics and Cell Migration

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 286, 期 1, 页码 620-633

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110.188086

关键词

-

资金

  1. National Institutes of Health [CA87986, CA99163, CA105489, CA116552, CA94143, CA96844]
  2. Department of Defense Breast Cancer [W81XWH-05-1-0231, DAMD17-02-1-0508, W81XWH-07-1-0351]
  3. Nebraska Department of Health and Human Services [LB-506]
  4. Nebraska Center for Nanomedicine [NCN-COBRE]
  5. NCI, National Institutes of Health

向作者/读者索取更多资源

The E3 ubiquitin ligase Casitas B lymphoma protein (Cbl) controls the ubiquitin-dependent degradation of EGF receptor (EGFR), but its role in regulating downstream signaling elements with which it associates and its impact on biological outcomes of EGFR signaling are less clear. Here, we demonstrate that stimulation of EGFR on human mammary epithelial cells disrupts adherens junctions (AJs) through Vav2 and Rac1/Cdc42 activation. In EGF-stimulated cells, Cbl regulates the levels of phosphorylated Vav2 thereby attenuating Rac1/Cdc42 activity. Knockdown of Cbl and Cbl-b enhanced the EGF-induced disruption of AJs and cell motility. Overexpression of constitutively active Vav2 activated Rac1/Cdc42 and reorganized junctional actin cytoskeleton; these effects were suppressed by WT Cbl and enhanced by a ubiquitin ligase-deficient Cbl mutant. Cbl forms a complex with phospho-EGFR and phospho-Vav2 and facilitates phospho-Vav2 ubiquitinylation. Cbl can also interact with Vav2 directly in a Cbl Tyr-700-dependent manner. A ubiquitin ligase-deficient Cbl mutant enhanced the morphological transformation of mammary epithelial cells induced by constitutively active Vav2; this effect requires an intact Cbl Tyr-700. These results indicate that Cbl ubiquitin ligase plays a critical role in the maintenance of AJs and suppression of cell migration through down-regulation of EGFR-Vav2 signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据