4.6 Article

State-dependent Regulation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Gating by a High Affinity Fe3+ Bridge between the Regulatory Domain and Cytoplasmic Loop 3

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 285, 期 52, 页码 40438-40447

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110.161497

关键词

-

资金

  1. National Institutes of Health [2R56DK056796-10]
  2. American Heart Association [10SDG4120011]

向作者/读者索取更多资源

The unique regulatory (R) domain differentiates the human CFTR channel from other ATP-binding cassette transporters and exerts multiple effects on channel function. However, the underlying mechanisms are unclear. Here, an intracellular high affinity (2.3 x 10(-19) M) Fe3+ bridge is reported as a novel approach to regulating channel gating. It inhibited CFTR activity by primarily reducing an open probability and an opening rate, and inhibition was reversed by EDTA and phenanthroline. His-950, His-954, Cys-832, His-775, and Asp-836 were found essential for inhibition and phosphorylated Ser-768 may enhance Fe3+ binding. More importantly, inhibition by Fe3+ was state-dependent. Sensitivity to Fe3+ was reduced when the channel was locked in an open state by AMP-PNP. Similarly, a K978C mutation from cytoplasmic loop 3 (CL3), which promotes ATP-independent channel opening, greatly weakened inhibition by Fe3+ no matter whether NBD2 was present or not. Therefore, although ATP binding-induced dimerization of NBD1-NBD2 is required for channel gating, regulation of CFTR activity by Fe3+ may involve an interaction between the R domain and CL3. These findings may support proximity of the R domain to the cytoplasmic loops. They also suggest that Fe3+ homeostasis may play a critical role in regulating pathophysiological CFTR activity because dysregulation of this protein causes cystic fibrosis, secretary diarrhea, and infertility.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据