4.6 Article

Protection of Cells in Physiological Oxygen Tensions against DNA Damage-induced Apoptosis

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 285, 期 18, 页码 13658-13665

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.062562

关键词

-

资金

  1. National Institutes of Health [CA80058, CA85214, CA78356, CA82211]
  2. Medical Research Council

向作者/读者索取更多资源

Oxygen availability has important effects on cell physiology. Although hyperoxic and hypoxic stresses have been well characterized, little is known about cellular functions in the oxygen levels commonly found in vivo. Here, we show that p53-dependent apoptosis in response to different DNA-damaging agents was reduced when normal and cancer cells were cultured at physiological oxygen tensions instead of the usual atmospheric levels. Different from what has been described in hypoxia, this was neither determined by decreases in p53 induction or its transactivation activity, nor by differences in the intracellular accumulation of reactive oxygen species. At these physiological oxygen levels, we found a constitutive activation of the ERK1/2 MAPK in all the models studied. Inhibition of this signaling pathway reversed the protective effect in some but not all cell lines. We conclude that a stress-independent constitutive activation of prosurvival pathways, including but probably not limited to MAPK, can protect cells in physiological oxygen tensions against genotoxic stress. Our results underscore the need of considering the impact of oxygen levels present in the tissue microenvironment when studying cell sensitivity to treatments such as chemotherapy and radiotherapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据