4.6 Article

An Integrated Approach for Experimental Target Identification of Hypoxia-induced miR-210

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 50, 页码 35134-35143

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.052779

关键词

-

资金

  1. Ministero della Salute [RF06-conv.29/07-1, RF07-conv-85.1, RBLA035a4X-001, RF05-conv.66-1, RF07-55.1, RF07-strat]

向作者/读者索取更多资源

miR-210 is a key player of cell response to hypoxia, modulating cell survival, VEGF-driven endothelial cell migration, and the ability of endothelial cells to form capillary-like structures. A crucial step in understanding microRNA (miRNA) function is the identification of their targets. However, only few miR-210 targets have been identified to date. Here, we describe an integrated strategy for large-scale identification of new miR-210 targets by combining transcriptomics and proteomics with bioinformatic approaches. To experimentally validate candidate targets, the RNA-induced silencing complex (RISC) loaded with miR-210 was purified by immunoprecipitation along with its mRNA targets. The complex was significantly enriched in mRNAs of 31 candidate targets, such as BDNF, GPD1L, ISCU, NCAM, and the non-coding RNA Xist. A subset of the newly identified targets was further confirmed by 3'-untranslated region (UTR) reporter assays, and hypoxia induced down-modulation of their expression was rescued blocking miR-210, providing support for the approach validity. In the case of 9 targets, such as PTPN1 and P4HB, miR-210 seed-pairing sequences localized in the coding sequence or in the 5'-UTR, in line with recent data extending miRNA targeting beyond the classic 3'-UTR recognition. Finally, Gene Ontology analysis of the targets highlights known miR-210 impact on cell cycle regulation and differentiation, and predicts a new role of this miRNA in RNA processing, DNA binding, development, membrane trafficking, and amino acid catabolism. Given the complexity of miRNA actions, we view such a multiprong approach as useful to adequately describe the multiple pathways regulated by miR-210 during physiopathological processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据