4.6 Article

RGC-32 Mediates Transforming Growth Factor-β-induced Epithelial-Mesenchymal Transition in Human Renal Proximal Tubular Cells

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 14, 页码 9426-9432

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M900039200

关键词

-

资金

  1. National Institutes of Health [HL093429, DK39308, HL23081]
  2. American Heart Association [0765265U]
  3. Chinese National Nature Science Foundation [30871177]
  4. Veterans Administration Merit Award

向作者/读者索取更多资源

Epithelial-mesenchymal transition (EMT) occurs in several disease states, including renal fibrosis and carcinogenesis. Myo-fibroblasts produced from EMT of renal tubular cells are responsible for the deposition of extracellular matrix components in a large portion of renal interstitial fibrosis. Transforming growth factor-beta (TGF-beta) plays an essential role in the EMT of renal tubular cells, but the molecular mechanism governing this process remains largely unknown. In this study, we found that RGC-32 ( response gene to complement 32) is critical for TGF-beta-induced EMT of human renal proximal tubular cells (HPTCs). RGC-32 is not normally expressed in the HPTCs. However, TGF-beta stimulation markedly activates RGC-32 while inducing an EMT, as shown by the induction of smooth muscle alpha-actin (alpha-SMA) and extracellular matrix proteins collagen I and fibronectin, as well as the reduction of epithelial marker E-cadherin. TGF-beta function is mediated by several signaling pathways, but RGC-32 expression in HPTCs appears to be mainly regulated by Smad. Functionally, RGC-32 appears to mediate TGF-beta-induced EMT of HPTCs. Blockage of RGC-32 using short hairpin interfering RNA significantly inhibits TGF-beta induction of myofibroblast marker gene alpha-SMA while repressing the expression of E-cadherin. In contrast, overexpression of RGC-32 induces alpha-SMA expression while restoring E-cadherin. RGC-32 also inhibits the expression of another adherens junction protein, N-cadherin, suggesting that RGC-32 alone induces the phenotypic conversion of renal epithelial cells to myofibroblasts. Additional studies show that RGC-32 stimulates the production of extracellular matrix components fibronectin and collagen I. Mechanistically, RGC-32 induces EMT via the activation of other transcription factors such as Snail and Slug. RGC-32 knockdown inhibits the expression of Snail and Slug during TGF-beta-induced EMT. Taken together, our data demonstrate for the first time that RGC-32 plays a critical role in TGF-beta-induced EMT of renal tubular cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据