4.6 Article

Reduced Expression of the Hyaluronan and Proteoglycan Link Proteins in Malignant Gliomas

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 39, 页码 26547-26556

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.013185

关键词

-

资金

  1. Dardinger Center
  2. American Cancer Society [IRG-67003-44]
  3. American Brain Tumor Association

向作者/读者索取更多资源

Malignant gliomas have a distinctive ability to infiltrate the brain parenchyma and disrupt the neural extracellular matrix that inhibits motility of axons and normal neural cells. Chondroitin sulfate proteoglycans (CSPGs) are among the major inhibitory components in the neural matrix, but surprisingly, some are up-regulated in gliomas and act as pro-invasive signals. In the normal brain, CSPGs are thought to associate with hyaluronic acid and glycoproteins such as the tenascins and link proteins to form the matrix scaffold. Here, we examined for the first time the expression of link proteins in human brain and malignant gliomas. Our results indicate that HAPLN4 and HAPLN2 are the predominant members of this family in the adult human brain but are strongly reduced in the tumor parenchyma. To test if their absence was related to a pro-invasive gain of function of CSPGs, we expressed HAPLN4 in glioma cells in combination with the CSPG brevican. Surprisingly, HAPLN4 increased glioma cell adhesion and migration and even potentiated the motogenic effect of brevican. Further characterization revealed that HAPLN4 expressed in glioma cells was largely soluble and did not reproduce the strong, hyaluronan-independent association of the native protein to brain subcellular membranes. Taken together, our results suggest that the tumor parenchyma is rich in CSPGs that are not associated to HAPLNs and could instead interact with other extracellular matrix proteins produced by glioma cells. This dissociation may contribute to changes in the matrix scaffold caused by invasive glioma cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据