4.6 Article

A Functional Kinase Homology Domain Is Essential for the Activity of Photoreceptor Guanylate Cyclase 1

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 285, 期 3, 页码 1899-1908

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.061713

关键词

-

资金

  1. National Institutes of Health [EY008061, EY08123, P30 EY11373]
  2. Foundation Fighting Blindness

向作者/读者索取更多资源

Phototransduction is carried out by a signaling pathway that links photoactivation of visual pigments in retinal photoreceptor cells to a change in their membrane potential. Upon photoactivation, the second messenger of phototransduction, cyclic GMP, is rapidly degraded and must be replenished during the recovery phase of phototransduction by photoreceptor guanylate cyclases (GCs) GC1 (or GC-E) and GC2 (or GC-F) to maintain vision. Here, we present data that address the role of the GC kinase homology (KH) domain in cyclic GMP production by GC1, the major cyclase in photoreceptors. First, experiments were done to test which GC1 residues undergo phosphorylation and whether such phosphorylation affects cyclase activity. Using mass spectrometry, we showed that GC1 residues Ser-530, Ser-532, Ser-533, and Ser-538, located within the KH domain, undergo light-and signal transduction-independent phosphorylation in vivo. Mutations in the putative Mg2+ binding site of the KH domain abolished phosphorylation, indicating that GC1 undergoes autophosphorylation. The dramatically reduced GC activity of these mutants suggests that a functional KH domain is essential for cyclic GMP production. However, evidence is presented that autophosphorylation does not regulate GC1 activity, in contrast to phosphorylation of other members of this cyclase family.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据