4.6 Article

Kinetics of the Interaction of myo1c with Phosphoinositides

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 42, 页码 28650-28659

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.049791

关键词

-

资金

  1. National Institutes of Health [GM057247]
  2. National Institutes of Health Training [GM07229]
  3. American Heart Association predoctoral fellowship

向作者/读者索取更多资源

myo1c is a single-headed myosin that dynamically links membranes to the actin cytoskeleton. A putative pleckstrin homology domain has been identified in the myo1c tail that binds phosphoinositides and soluble inositol phosphates with high affinity. However, the kinetics of association and dissociation and the influence of phospholipid composition on the kinetics have not been determined. Stopped-flow spectroscopy was used to measure the binding and dissociation of a recombinant myo1c construct containing the tail and regulatory domains (myo1c(IQ-tail)) to and from 100-nm diameter large unilamellar vesicles (LUVs). We found the time course of association of myo1c(IQ-tail) with LUVs containing 2% phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P-2) followed a two-exponential time course, and the rate of the predominant fast phase depended linearly upon the total lipid concentration. The apparent second-order rate constant was approximately diffusion-limited. Increasing the molar ratio of anionic phospholipid by adding phosphatidylserine, additional PtdIns(4,5)P-2, or by situating PtdIns(4,5)P-2 in a more physiologically relevant lipid background increased the apparent association rate constant less than 2-fold. myo1c(IQ-tail) dissociated from PtdIns(4,5)P-2 at a slower rate (2.0 s(-1)) than the pleckstrin homology domain of phospholipase C-delta (13 s(-1)). The presence of additional anionic phospholipid reduced the myo1c(IQ-tail) dissociation rate constant > 50-fold but marginally changed the dissociation rate of phospholipase C-delta, suggesting that additional electrostatic interactions in myo1c(IQ-tail) help to stabilize binding. Remarkably, high concentrations of soluble inositol phosphates induce dissociation of myo1c(IQ-tail) from LUVs, suggesting that phosphoinositides are able to bind to and dissociate from myo1c(IQ-tail) as it remains bound to the membrane.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据