4.6 Article

Hyaluronan Mediates Ozone-induced Airway Hyperresponsiveness in Mice

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 17, 页码 11309-11317

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M802400200

关键词

-

资金

  1. National Institutes of Health [ES11961]
  2. NIEHS [ES16126]
  3. NHLBI [HL91335, HL62472, HL73896]

向作者/读者索取更多资源

Ozone is a common urban environmental air pollutant and significantly contributes to hospitalizations for respiratory illness. The mechanisms, which regulate ozone-induced broncho-constriction, remain poorly understood. Hyaluronan was recently shown to play a central role in the response to noninfectious lung injury. Therefore, we hypothesized that hyaluronan contributes to airway hyperreactivity (AHR) after exposure to ambient ozone. Using an established model of ozone-induced airways disease, we characterized the role of hyaluronan in airway hyperresponsiveness. The role of hyaluronan in response to ozone was determined by using therapeutic blockade, genetically modified animals, and direct challenge to hyaluronan. Ozone-exposed mice demonstrate enhanced AHR associated with elevated hyaluronan levels in the lavage fluid. Mice deficient in either CD44 (the major receptor for hyaluronan) or inter-alpha-trypsin inhibitor (molecule that facilitates hyaluronan binding) show similar elevations in hyaluronan but are protected from ozone-induced AHR. Mice pretreated with hyaluronan-binding peptide are protected from the development of ozone-induced AHR. Overexpression of hyaluronan enhances the airway response to ozone. Intratracheal instillation of endotoxin-free low molecular weight hyaluronan induces AHR dependent on CD44, whereas instillation of high molecular weight hyaluronan protects against ozone-induced AHR. In conclusion, we demonstrate that hyaluronan mediates ozone-induced AHR, which is dependent on the fragment size and both CD44 and inter-alpha-trypsin inhibitor. These data support the conclusion that pulmonary matrix can contribute to the development of airway hyperresponsiveness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据