4.6 Article

Inhibition of p66ShcA Longevity Gene Rescues Podocytes from HIV-1-induced Oxidative Stress and Apoptosis

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 24, 页码 16648-16658

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.008482

关键词

-

资金

  1. National Institutes of Health [RO1DA12111, 1RO1 HL072852, 1RO1 DK073793]
  2. Medical Research Council [G0800200] Funding Source: researchfish
  3. MRC [G0800200] Funding Source: UKRI

向作者/读者索取更多资源

Glomerular visceral epithelial cells (podocytes) play a critical role in the pathogenesis of human immunodeficiency virus (HIV)-associated nephropathy. A key question concerns the mechanism(s) by which the HIV-1 genome alters the phenotype of the highly specialized, terminally differentiated podocytes. Here, using an in vitro system of conditionally immortalized differentiated human podocytes (CIDHPs), we document a pivotal role for the p66ShcA protein in HIV-1-induced reactive oxygen species generation and CIDHP apoptosis. CIDHP transfected with truncated HIV-1 construct (NL4-3) exhibit increased reactive oxygen species metabolism, DNA strand breaks, and a 5-fold increase in apoptosis, whereas the opposite was true for NL4-3/CIDHP co-transfected with mu-36p66ShcA (mu-36) dominant negative expression vector or isoform-specific p66-small interfering RNA. Phosphorylation at Ser-36 of the wild type p66ShcA protein, required for p66ShcA redox function and inhibition of the potent stress response regulator Foxo3a, was unchanged in mu-36/NL4-3/CIDHP but increased in NL4-3/CIDHP. Acute knockdown of Foxo3a by small interfering RNA induced a 50% increase in mu-36/NL4-3/CIDHP apoptosis, indicating that Foxo3a-dependent responses promote the survival phenotype in mu-36 cells. We conclude that inhibition of p66ShcA redox activity prevents generation of HIV-1 stress signals and activation of the CIDHP apoptosis program.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据