4.6 Article

Protein Phosphatase 5 Regulates the Function of 53BP1 after Neocarzinostatin-induced DNA Damage

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 15, 页码 9845-9853

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M809272200

关键词

-

资金

  1. Ministry of Science and Technology, the Korean Government [M1063901, M20706000032]

向作者/读者索取更多资源

53BP1 (p53-binding protein 1) is a conserved nuclear protein that is phosphorylated in response to DNA damage and rapidly recruited to the site of DNA double strand breaks, demonstrating its role in the early events to DNA damage and repair of damaged DNA. In this study, we used the yeast two-hybrid system to identify proteins that interact with 53BP1. Identification and characterization of 53BP1 protein interactions may help to further elucidate the function and regulation of 53BP1. We identified protein phosphatase 5 (PP5), a serine/threonine phosphatase that has been implicated in multiple cellular function, as a 53BP1-binding protein. This interaction further confirmed that 53BP1 interacts with PP5 in PP5-overexpressing U2OS cells, after radiomimetic agent neocarzinostatin (NCS) treatment. 53BP1 dephosphorylation at Ser-25 and Ser-1778 was accelerated in PP5-overexpressing U2OS cells following NCS treatment, and its dephosphorylation was correlated with reduced phospho-53BP1 foci formation. In contrast, the overexpression of PP5 had no effect on NCS-activated BRCA1-Ser1524 phosphorylation. Additionally, PP5 down-regulation inhibited the dephosphorylation of 53BP1 on Ser-1778 and the disappearance of phospho-53BP1 foci following NCS treatment. Moreover, non-homologous end-joining activity was reduced in PP5-overexpressing U2OS cells. These findings indicate that PP5 plays an important role in the regulation of 53BP1 phosphorylation and activity in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据