4.6 Article

Reciprocal Intramolecular Interactions of Tomosyn Control Its Inhibitory Activity on SNARE Complex Formation

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 18, 页码 12480-12490

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M807182200

关键词

-

资金

  1. National Project on Targeted Proteins Research Program
  2. Scientific Research C
  3. Ministry of Education, Culture, Sports, Science, and Technology, Japan

向作者/读者索取更多资源

Neurotransmitter release from presynaptic nerve terminals is regulated by SNARE complex-mediated synaptic vesicle fusion. Tomosyn, a negative regulator of neurotransmitter release, which is composed of N-terminal WD40 repeats, a tail domain, and a C-terminal VAMP-like domain, is known to inhibit SNARE complex formation by sequestering target SNAREs (t-SNAREs) upon interaction of its C-terminal VAMP-like domain with t-SNAREs. However, it remains unclear how the inhibitory activity of tomosyn is regulated. Here we show that the tail domain functions as a regulator of the inhibitory activity of tomosyn through intramolecular interactions. The binding of the tail domain to the C-terminal VAMP-like domain interfered with the interaction of the C-terminal VAMP-like domain with t-SNAREs, and thereby repressed the inhibitory activity of tomosyn on the SNARE complex formation. The repressed inhibitory activity of tomosyn was restored by the binding of the tail domain to the N-terminal WD40 repeats. These results indicate that the probable conformational change of tomosyn mediated by the intramolecular interactions of the tail domain controls its inhibitory activity on the SNARE complex formation, leading to a regulated inhibition of neurotransmitter release.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据