4.6 Article

Signal Transducer and Activator of Transcription 3 (STAT3) Mediates Amino Acid Inhibition of Insulin Signaling through Serine 727 Phosphorylation

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 51, 页码 35425-35432

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.051516

关键词

-

资金

  1. NIAMS/National Institutes of Health [AR48914]
  2. American Diabetes Association

向作者/读者索取更多资源

Nutrient overload is associated with the development of obesity, insulin resistance, and type II diabetes. High plasma concentrations of amino acids have been found to correlate with insulin resistance. At the cellular level, excess amino acids impair insulin signaling, the mechanisms of which are not fully understood. Here, we report that STAT3 plays a key role in amino acid dampening of insulin signaling in hepatic cells. Excess amino acids inhibited insulin-stimulated Akt phosphorylation and glycogen synthesis in mouse primary hepatocytes as well as in human hepatocarcinoma HepG2 cells. STAT3 knockdown protected insulin sensitivity from inhibition by amino acids. Amino acids stimulated the phosphorylation of STAT3 at Ser(727), but not Tyr(705). Replacement of the endogenous STAT3 with wild-type, but not S727A, recombinant STAT3 restored the ability of amino acids to inhibit insulin signaling, suggesting that Ser(727) phosphorylation was critical for STAT3-mediated amino acid effect. Furthermore, overexpression of STAT3-S727D was sufficient to inhibit insulin signaling in the absence of excess amino acids. Our results also indicated that mammalian target of rapamycin was likely responsible for the phosphorylation of STAT3 at Ser(727) in response to excess amino acids. Finally, we found that STAT3 activity and the expression of its target gene socs3, known to be involved in insulin resistance, were both stimulated by excess amino acids and inhibited by rapamycin. In conclusion, our study reveals STAT3 as a novel mediator of nutrient signals and identifies a Ser(727) phosphorylation-dependent and Tyr(705) phosphorylation-independent STAT3 activation mechanism in the modulation of insulin signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据