4.6 Article

D-loop of Actin Differently Regulates the Motor Function of Myosins II and V

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 284, 期 50, 页码 35251-35258

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M109.013565

关键词

-

资金

  1. 21st Century Centers of Excellence Program
  2. Academic Frontier Project

向作者/读者索取更多资源

To gain more information on the manner of actin-myosin interaction, we examined how the motile properties of myosins II and V are affected by the modifications of the DNase I binding loop (D-loop) of actin, performed in two different ways, namely, the proteolytic digestion with subtilisin and the M47A point mutation. In an in vitro motility assay, both modifications significantly decreased the gliding velocity on myosin II-heavy meromyosin due to a weaker generated force but increased it on myosin V. On the other hand, single molecules of myosin V walked with the same velocity on both the wild-type and modified actins; however, the run lengths decreased sharply, correlating with a lower affinity of myosin for actin due to the D-loop modifications. The difference between the single-molecule and the ensemble measurements with myosin V indicates that in an in vitro motility assay the non-coordinated multiple myosin V molecules impose internal friction on each other via binding to the same actin filament, which is reduced by the weaker binding to the modified actins. These results show that the D-loop strongly modulates the force generation by myosin II and the processivity of myosin V, presumably affecting actin-myosin interaction in the actomyosin-ADP center dot P-i state of both myosins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据